3.5.30 \(\int \frac {(1+c^2 x^2)^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx\) [430]

3.5.30.1 Optimal result
3.5.30.2 Mathematica [A] (verified)
3.5.30.3 Rubi [A] (verified)
3.5.30.4 Maple [A] (verified)
3.5.30.5 Fricas [F]
3.5.30.6 Sympy [F]
3.5.30.7 Maxima [F]
3.5.30.8 Giac [F]
3.5.30.9 Mupad [F(-1)]

3.5.30.1 Optimal result

Integrand size = 24, antiderivative size = 216 \[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=-\frac {\left (1+c^2 x^2\right )^3}{b c (a+b \text {arcsinh}(c x))}-\frac {15 \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{16 b^2 c}-\frac {3 \text {Chi}\left (\frac {4 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {4 a}{b}\right )}{4 b^2 c}-\frac {3 \text {Chi}\left (\frac {6 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {6 a}{b}\right )}{16 b^2 c}+\frac {15 \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b^2 c}+\frac {3 \cosh \left (\frac {4 a}{b}\right ) \text {Shi}\left (\frac {4 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c}+\frac {3 \cosh \left (\frac {6 a}{b}\right ) \text {Shi}\left (\frac {6 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b^2 c} \]

output
-(c^2*x^2+1)^3/b/c/(a+b*arcsinh(c*x))+15/16*cosh(2*a/b)*Shi(2*(a+b*arcsinh 
(c*x))/b)/b^2/c+3/4*cosh(4*a/b)*Shi(4*(a+b*arcsinh(c*x))/b)/b^2/c+3/16*cos 
h(6*a/b)*Shi(6*(a+b*arcsinh(c*x))/b)/b^2/c-15/16*Chi(2*(a+b*arcsinh(c*x))/ 
b)*sinh(2*a/b)/b^2/c-3/4*Chi(4*(a+b*arcsinh(c*x))/b)*sinh(4*a/b)/b^2/c-3/1 
6*Chi(6*(a+b*arcsinh(c*x))/b)*sinh(6*a/b)/b^2/c
 
3.5.30.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.44 \[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=-\frac {16 b+48 b c^2 x^2+48 b c^4 x^4+16 b c^6 x^6+15 (a+b \text {arcsinh}(c x)) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {2 a}{b}\right )+12 (a+b \text {arcsinh}(c x)) \text {Chi}\left (4 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {4 a}{b}\right )+3 a \text {Chi}\left (6 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {6 a}{b}\right )+3 b \text {arcsinh}(c x) \text {Chi}\left (6 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {6 a}{b}\right )-15 a \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-15 b \text {arcsinh}(c x) \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-12 a \cosh \left (\frac {4 a}{b}\right ) \text {Shi}\left (4 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-12 b \text {arcsinh}(c x) \cosh \left (\frac {4 a}{b}\right ) \text {Shi}\left (4 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-3 a \cosh \left (\frac {6 a}{b}\right ) \text {Shi}\left (6 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-3 b \text {arcsinh}(c x) \cosh \left (\frac {6 a}{b}\right ) \text {Shi}\left (6 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{16 b^2 c (a+b \text {arcsinh}(c x))} \]

input
Integrate[(1 + c^2*x^2)^(5/2)/(a + b*ArcSinh[c*x])^2,x]
 
output
-1/16*(16*b + 48*b*c^2*x^2 + 48*b*c^4*x^4 + 16*b*c^6*x^6 + 15*(a + b*ArcSi 
nh[c*x])*CoshIntegral[2*(a/b + ArcSinh[c*x])]*Sinh[(2*a)/b] + 12*(a + b*Ar 
cSinh[c*x])*CoshIntegral[4*(a/b + ArcSinh[c*x])]*Sinh[(4*a)/b] + 3*a*CoshI 
ntegral[6*(a/b + ArcSinh[c*x])]*Sinh[(6*a)/b] + 3*b*ArcSinh[c*x]*CoshInteg 
ral[6*(a/b + ArcSinh[c*x])]*Sinh[(6*a)/b] - 15*a*Cosh[(2*a)/b]*SinhIntegra 
l[2*(a/b + ArcSinh[c*x])] - 15*b*ArcSinh[c*x]*Cosh[(2*a)/b]*SinhIntegral[2 
*(a/b + ArcSinh[c*x])] - 12*a*Cosh[(4*a)/b]*SinhIntegral[4*(a/b + ArcSinh[ 
c*x])] - 12*b*ArcSinh[c*x]*Cosh[(4*a)/b]*SinhIntegral[4*(a/b + ArcSinh[c*x 
])] - 3*a*Cosh[(6*a)/b]*SinhIntegral[6*(a/b + ArcSinh[c*x])] - 3*b*ArcSinh 
[c*x]*Cosh[(6*a)/b]*SinhIntegral[6*(a/b + ArcSinh[c*x])])/(b^2*c*(a + b*Ar 
cSinh[c*x]))
 
3.5.30.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {6205, 6234, 25, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c^2 x^2+1\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx\)

\(\Big \downarrow \) 6205

\(\displaystyle \frac {6 c \int \frac {x \left (c^2 x^2+1\right )^2}{a+b \text {arcsinh}(c x)}dx}{b}-\frac {\left (c^2 x^2+1\right )^3}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 6234

\(\displaystyle \frac {6 \int -\frac {\cosh ^5\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c}-\frac {\left (c^2 x^2+1\right )^3}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {6 \int \frac {\cosh ^5\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b^2 c}-\frac {\left (c^2 x^2+1\right )^3}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 5971

\(\displaystyle -\frac {6 \int \left (\frac {\sinh \left (\frac {6 a}{b}-\frac {6 (a+b \text {arcsinh}(c x))}{b}\right )}{32 (a+b \text {arcsinh}(c x))}+\frac {\sinh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arcsinh}(c x))}{b}\right )}{8 (a+b \text {arcsinh}(c x))}+\frac {5 \sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{32 (a+b \text {arcsinh}(c x))}\right )d(a+b \text {arcsinh}(c x))}{b^2 c}-\frac {\left (c^2 x^2+1\right )^3}{b c (a+b \text {arcsinh}(c x))}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {6 \left (-\frac {5}{32} \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )-\frac {1}{8} \sinh \left (\frac {4 a}{b}\right ) \text {Chi}\left (\frac {4 (a+b \text {arcsinh}(c x))}{b}\right )-\frac {1}{32} \sinh \left (\frac {6 a}{b}\right ) \text {Chi}\left (\frac {6 (a+b \text {arcsinh}(c x))}{b}\right )+\frac {5}{32} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )+\frac {1}{8} \cosh \left (\frac {4 a}{b}\right ) \text {Shi}\left (\frac {4 (a+b \text {arcsinh}(c x))}{b}\right )+\frac {1}{32} \cosh \left (\frac {6 a}{b}\right ) \text {Shi}\left (\frac {6 (a+b \text {arcsinh}(c x))}{b}\right )\right )}{b^2 c}-\frac {\left (c^2 x^2+1\right )^3}{b c (a+b \text {arcsinh}(c x))}\)

input
Int[(1 + c^2*x^2)^(5/2)/(a + b*ArcSinh[c*x])^2,x]
 
output
-((1 + c^2*x^2)^3/(b*c*(a + b*ArcSinh[c*x]))) + (6*((-5*CoshIntegral[(2*(a 
 + b*ArcSinh[c*x]))/b]*Sinh[(2*a)/b])/32 - (CoshIntegral[(4*(a + b*ArcSinh 
[c*x]))/b]*Sinh[(4*a)/b])/8 - (CoshIntegral[(6*(a + b*ArcSinh[c*x]))/b]*Si 
nh[(6*a)/b])/32 + (5*Cosh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcSinh[c*x]))/b 
])/32 + (Cosh[(4*a)/b]*SinhIntegral[(4*(a + b*ArcSinh[c*x]))/b])/8 + (Cosh 
[(6*a)/b]*SinhIntegral[(6*(a + b*ArcSinh[c*x]))/b])/32))/(b^2*c)
 

3.5.30.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6205
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[Simp[Sqrt[1 + c^2*x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x] 
)^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x 
^2)^p/(1 + c^2*x^2)^p]   Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x]) 
^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, 
 -1]
 

rule 6234
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2* 
x^2)^p]   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1), x], 
x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
3.5.30.4 Maple [A] (verified)

Time = 0.56 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.73

method result size
default \(\frac {-32 b \,c^{6} x^{6}-96 b \,c^{4} x^{4}-96 b \,c^{2} x^{2}+3 \,{\mathrm e}^{\frac {6 a}{b}} \operatorname {Ei}_{1}\left (6 \,\operatorname {arcsinh}\left (c x \right )+\frac {6 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )+12 \,{\mathrm e}^{\frac {4 a}{b}} \operatorname {Ei}_{1}\left (4 \,\operatorname {arcsinh}\left (c x \right )+\frac {4 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )+15 \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )-3 \,{\mathrm e}^{-\frac {6 a}{b}} \operatorname {Ei}_{1}\left (-6 \,\operatorname {arcsinh}\left (c x \right )-\frac {6 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )-15 \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )-12 \,{\mathrm e}^{-\frac {4 a}{b}} \operatorname {Ei}_{1}\left (-4 \,\operatorname {arcsinh}\left (c x \right )-\frac {4 a}{b}\right ) b \,\operatorname {arcsinh}\left (c x \right )+3 \,{\mathrm e}^{\frac {6 a}{b}} \operatorname {Ei}_{1}\left (6 \,\operatorname {arcsinh}\left (c x \right )+\frac {6 a}{b}\right ) a +12 \,{\mathrm e}^{\frac {4 a}{b}} \operatorname {Ei}_{1}\left (4 \,\operatorname {arcsinh}\left (c x \right )+\frac {4 a}{b}\right ) a +15 \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right ) a -3 \,{\mathrm e}^{-\frac {6 a}{b}} \operatorname {Ei}_{1}\left (-6 \,\operatorname {arcsinh}\left (c x \right )-\frac {6 a}{b}\right ) a -15 \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right ) a -12 \,{\mathrm e}^{-\frac {4 a}{b}} \operatorname {Ei}_{1}\left (-4 \,\operatorname {arcsinh}\left (c x \right )-\frac {4 a}{b}\right ) a -32 b}{32 c \,b^{2} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}\) \(374\)

input
int((c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x,method=_RETURNVERBOSE)
 
output
1/32*(-32*b*c^6*x^6-96*b*c^4*x^4-96*b*c^2*x^2+3*exp(6*a/b)*Ei(1,6*arcsinh( 
c*x)+6*a/b)*b*arcsinh(c*x)+12*exp(4*a/b)*Ei(1,4*arcsinh(c*x)+4*a/b)*b*arcs 
inh(c*x)+15*exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)*b*arcsinh(c*x)-3*exp(-6* 
a/b)*Ei(1,-6*arcsinh(c*x)-6*a/b)*b*arcsinh(c*x)-15*exp(-2*a/b)*Ei(1,-2*arc 
sinh(c*x)-2*a/b)*b*arcsinh(c*x)-12*exp(-4*a/b)*Ei(1,-4*arcsinh(c*x)-4*a/b) 
*b*arcsinh(c*x)+3*exp(6*a/b)*Ei(1,6*arcsinh(c*x)+6*a/b)*a+12*exp(4*a/b)*Ei 
(1,4*arcsinh(c*x)+4*a/b)*a+15*exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)*a-3*ex 
p(-6*a/b)*Ei(1,-6*arcsinh(c*x)-6*a/b)*a-15*exp(-2*a/b)*Ei(1,-2*arcsinh(c*x 
)-2*a/b)*a-12*exp(-4*a/b)*Ei(1,-4*arcsinh(c*x)-4*a/b)*a-32*b)/c/b^2/(a+b*a 
rcsinh(c*x))
 
3.5.30.5 Fricas [F]

\[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {{\left (c^{2} x^{2} + 1\right )}^{\frac {5}{2}}}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate((c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")
 
output
integral((c^4*x^4 + 2*c^2*x^2 + 1)*sqrt(c^2*x^2 + 1)/(b^2*arcsinh(c*x)^2 + 
 2*a*b*arcsinh(c*x) + a^2), x)
 
3.5.30.6 Sympy [F]

\[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {\left (c^{2} x^{2} + 1\right )^{\frac {5}{2}}}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}\, dx \]

input
integrate((c**2*x**2+1)**(5/2)/(a+b*asinh(c*x))**2,x)
 
output
Integral((c**2*x**2 + 1)**(5/2)/(a + b*asinh(c*x))**2, x)
 
3.5.30.7 Maxima [F]

\[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {{\left (c^{2} x^{2} + 1\right )}^{\frac {5}{2}}}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate((c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")
 
output
-((c^6*x^6 + 3*c^4*x^4 + 3*c^2*x^2 + 1)*(c^2*x^2 + 1) + (c^7*x^7 + 3*c^5*x 
^5 + 3*c^3*x^3 + c*x)*sqrt(c^2*x^2 + 1))/(a*b*c^3*x^2 + sqrt(c^2*x^2 + 1)* 
a*b*c^2*x + a*b*c + (b^2*c^3*x^2 + sqrt(c^2*x^2 + 1)*b^2*c^2*x + b^2*c)*lo 
g(c*x + sqrt(c^2*x^2 + 1))) + integrate(((6*c^6*x^6 + 11*c^4*x^4 + 4*c^2*x 
^2 - 1)*(c^2*x^2 + 1)^(3/2) + 6*(2*c^7*x^7 + 5*c^5*x^5 + 4*c^3*x^3 + c*x)* 
(c^2*x^2 + 1) + (6*c^8*x^8 + 19*c^6*x^6 + 21*c^4*x^4 + 9*c^2*x^2 + 1)*sqrt 
(c^2*x^2 + 1))/(a*b*c^4*x^4 + (c^2*x^2 + 1)*a*b*c^2*x^2 + 2*a*b*c^2*x^2 + 
a*b + (b^2*c^4*x^4 + (c^2*x^2 + 1)*b^2*c^2*x^2 + 2*b^2*c^2*x^2 + b^2 + 2*( 
b^2*c^3*x^3 + b^2*c*x)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1)) + 2 
*(a*b*c^3*x^3 + a*b*c*x)*sqrt(c^2*x^2 + 1)), x)
 
3.5.30.8 Giac [F]

\[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {{\left (c^{2} x^{2} + 1\right )}^{\frac {5}{2}}}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate((c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")
 
output
integrate((c^2*x^2 + 1)^(5/2)/(b*arcsinh(c*x) + a)^2, x)
 
3.5.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+c^2 x^2\right )^{5/2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {{\left (c^2\,x^2+1\right )}^{5/2}}{{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2} \,d x \]

input
int((c^2*x^2 + 1)^(5/2)/(a + b*asinh(c*x))^2,x)
 
output
int((c^2*x^2 + 1)^(5/2)/(a + b*asinh(c*x))^2, x)